Receiver Performance

Rob Sherwood NCØB

Lots of good RX but transmitters lagging

• What is important in a DX pile-up?

- We need Good Dynamic Range to hear weak signals in the presence of near-by strong signals.
- In a DXpedition the pile-up is typically:
- CW signals "Up 2" or SSB signals "Up 5 to 10"
- DX pile-ups Contests, it is the same problem
- You need a better receiver for CW than for SSB.
- What is the weak link today? Transmitters!

State-of-the-Art in Dynamic Range today

- Close-in dynamic range (DR3) > 100 dB
- Reciprocal Mixing (RMDR) > 115 dB
- Rigs with DR3 96 dB or greater:
- Icom IC-7851, Flex 6000 & Elecraft K3S
- Icom 7300/7610
- TS-890S & FTdx-101D top RMDR performers
- Apache 7000DLE
- None are RMDR (phase noise) limited

What are the latest new rigs?

- Kenwood TS-890S
- Hybrid architecture
- Best RMDR I have ever measured
- Single receiver, unlike TS-990S
- Shipped in time for October CQWW SSB
- Yaesu FTdx-101D shipped in late April 2019
- Hybrid architecture
- Dual receivers
- Arrives at Sherwood lab May 9, 2019.

Kenwood TS-890S

- The weak point of the TS-990S was phase noise in the LO (local oscillator).
- Likely only a problem in high RF environments
- This limitation is 100% corrected in the new TS-890S, plus the much better bandscope.
- To get accurate RMDR measurements I had to purchase several Wenzel low-noise crystal oscillators.
- However measuring dynamic range (DR3) was not an issue with HP 8642A synthesizers.

TS-990S vs. TS-890S Comparisons

	RIG	TS-990S	TS-890S	
	20 kHz dynamic range:	111 dB	106 dB	
	2 kHz dynamic range:	87 dB*	105 dB	
	20 kHz RMDR:	116 dB	131 dB^	
	2 kHz RMDR:	89 dB	127 dB^	
*	(phase noise [RMDR] limited)			
۸	(measured on 40 meters,	Wenzel os	scillator)	

Will there ever be a TS-990SG model that merges the 890S technology into the 990S?

FTdx-101D provided by Randy W2KRY

Yaesu FTdx-101D vs. TS-890S

RIG FTdx-101D TS-890S

- 20 kHz dynamic range: 110 dB 106 dB
- 2 kHz dynamic range: 110 dB 105 dB
- 20 kHz RMDR: 129 dB 131 dB
 2 kHz RMDR: 125 dB 127 dB
- Yaesu arrived after 2018/2019 contest season.

Hybrid Down-conversion Superhet with Direct Sampling Bandscope & Waterfall RMDR measurements made on 7.0 MHz with Wenzel crystal oscillator.

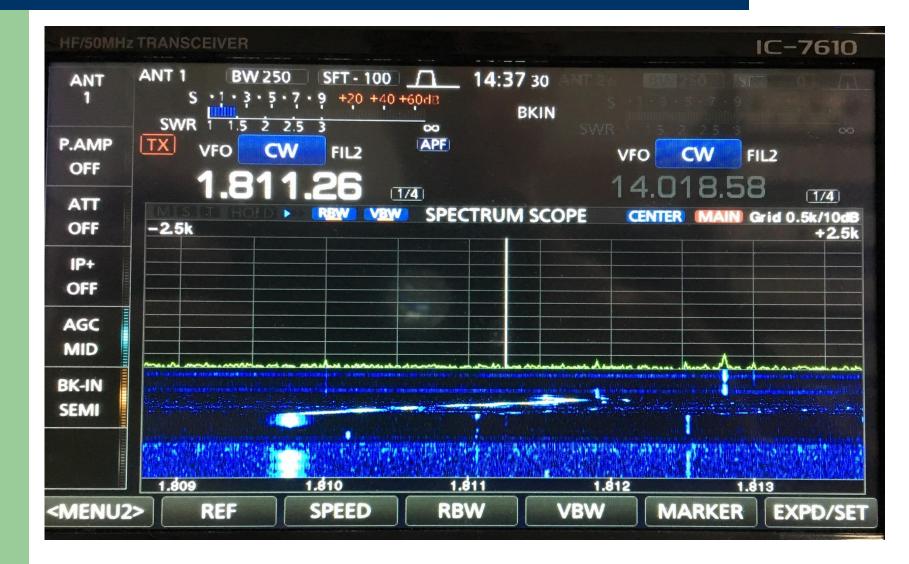
What do we know about the K4?

A comment on the Elecraft K4

- The K4 was announced at Dayton 2019.
- The base unit will be much like an IC-7610.
- Add the superhet module, (K3s performance) the architecture will be similar to the Yaesu FTdx-101D.
- The K4 superhet mixer option will feed its output to the ADC chip, and then down stream.

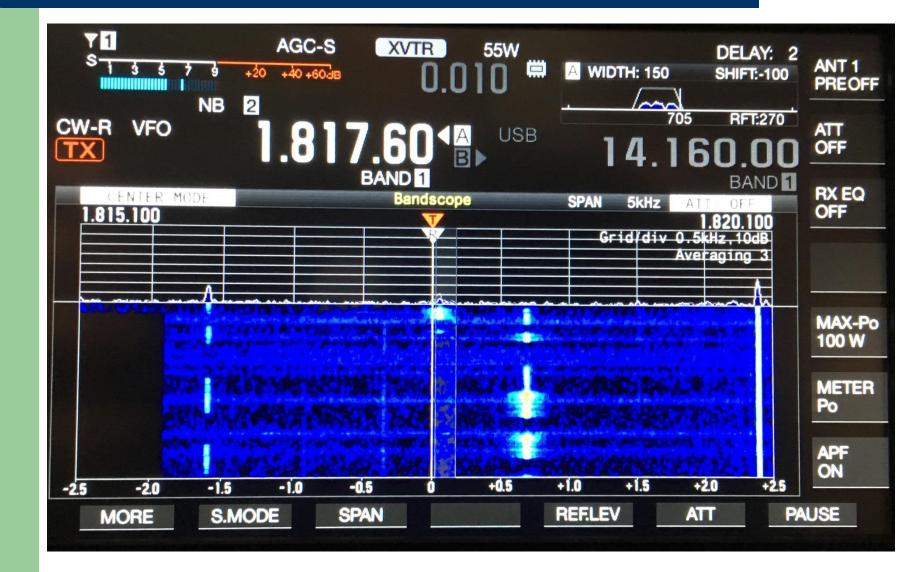
Icom IC-7610 & Kenwood TS-890S

How did these two rigs stack up?

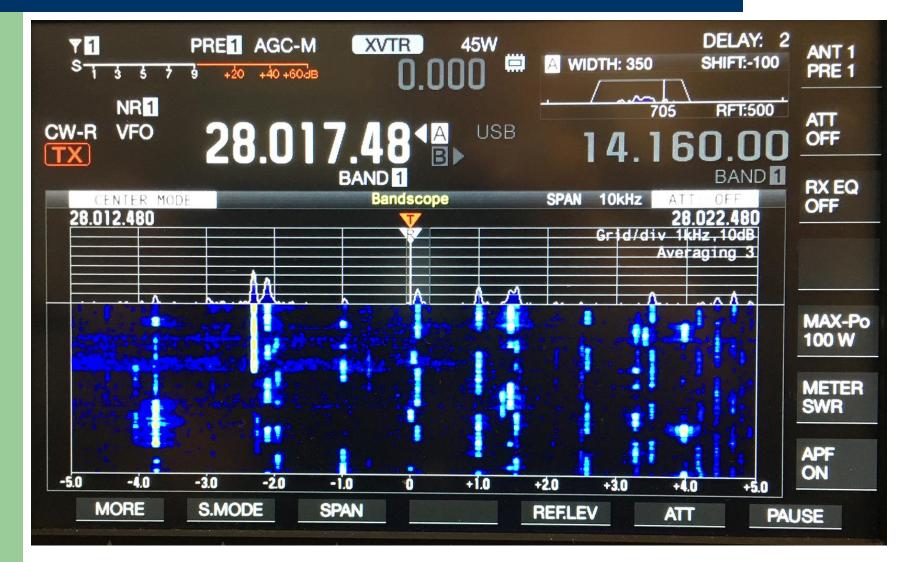

- While CQWW SSB is important, adjacentchannel splatter dominates over rig differences.
- More on transmit issues later.
- ARRL 160m CW a good test for lots of QRM.
- ARRL 10m: A good test for weak signals.
- DSP & APF selectivity excellent on both.
- NR & NB the Icom wins
- Waterfall the Kenwood wins hands down, at least the way I operate S&P CW.

For me the Kenwood waterfall makes the radio

- If you are "running", I doubt the scope/waterfall make much difference.
- For the S&P operator, CW or SSB, Kenwood "thought out-of-the-box" from my perspective.
- The following show the differences in the waterfall as you tune the radio to the next station to work.

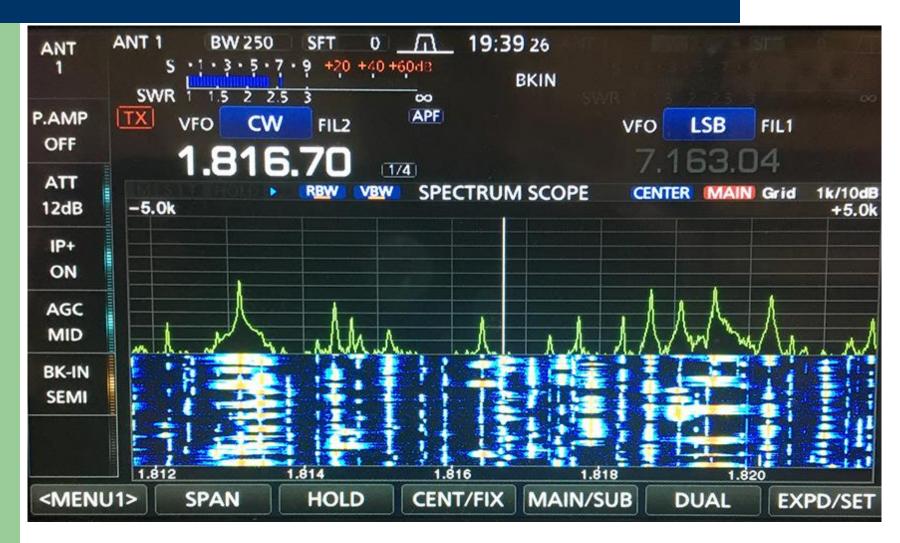

My workaround: use band scope with averaging OFF

Icom waterfall slewing issue while tuning



Whole waterfall shifts, but leaves a blank space

Kenwood waterfall while tuning



Over 20 stations in 10 kHz (ARRL) The 10m band Saturday afternoon

Over 30 stations in 10 kHz IC-7610

CQWW 160m CW Friday 7:40 PM

The year of the hybrid legacy & DS SDR radios

- Examples Legacy: K3S & Ftdx-5000, down conversion
- Examples Direct Sampling: Apache, Flex & Icom
- Dayton 2018 & 2019 combined both architectures.
- Main RF/IF chain: mixer, roofing filter, mixer *, DSP
- Display: Direct Sampling after the first mixer but before the roofing filter
- Best of both world? In high RF environment. Field Day
- Direct sampling SDR (DS SDR) requires the operator to manage net receiver gain more carefully.
- With a down-conversion radio with a roofing filter you can be careless!
- * Slightly different in 101D, but accomplishes same thing.

Why is direct sampling gain important?

- Field Day, a ham 1 mile away, or a multi-multi contest station is a tough RF environment for a direct sampling radio.
- In effect the roofing filter bandwidth is the entire band, or more likely a half octave filter, for example 11 to 15 MHz ! (IC-7610)
- A tracking pre-selector helps to some extent.
- Keep the preamp OFF, and use input attenuation or RF gain to control overload.

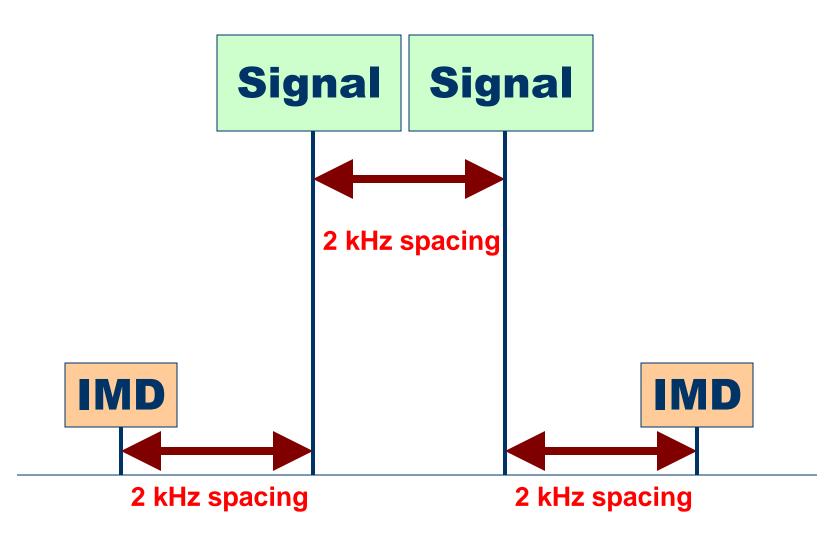
When is Attenuation a Win – Win Scenario?

- Note: If band noise is reading upscale on your S meter, then add attenuation.
- You lose **NOTHING** in terms of sensitivity!
- I set AGC threshold about 6 dB or so above band noise for least "contest fatigue" and lowest chance of overload on ANY radio.
- Attenuation at night on 40, 80 and 160m is a given, assuming you are listening on your transmit antenna: 6 to 12 dB attenuation 40/80m, 12 to18 dB attenuation160m

Some are only CW oriented *

Features desirable today

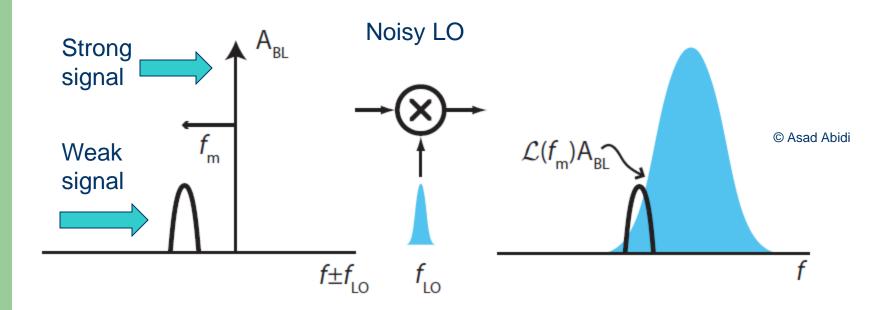
- QSK, or at least click-free semi-break-in *
- APF to reduce band noise and fatigue *
- Bandscope & waterfall display for S&P contesting, for multipliers, & watch the pile-up.
- Efficient User Interface
- Rock solid connection to logging program
- For most, at least some kind of external manual controls for computer-controlled rigs.
- DJ Console, as an example for Apache
- Flex knob, or possibly Maestro for Flex


Time for the numbers

- What do these state-of-the-art numbers mean?
- How do we cope with a more typical radio?
- We can optimize the performance of an 85 dB, let alone a 90 dB radio.
- Lots of transceivers can be perfectly adequate.

What does dynamic range mean?

- Two equal signals are fed into the receiver.
- Third-order IMD is dominant.
- Level increased until distortion = noise floor
- This level vs. the noise floor = dynamic range
- Defined in QST & hr magazine 1975
- Noise floor = -128 dBm, test signals = -28 dBm
- -128 dBm minus -28 dBm = 100 dB
- Dynamic Range (DR3) = 100 dB


Third Order IMD to Measure Dynamic Range

A note on phase noise / RMDR

- Reciprocal Mixing Dynamic Range (RMDR)
- Since late in 2013 the ARRL has consistently emphasized the importance of good phase noise performance (RMDR).
- Read Bob Allison's sidebar April 2012 QST & latest update May 2016 QST for details.

Reciprocal mixing puts LO noise on top of weak signal

Noisy local oscillator (LO) transfers its noise to the strong out-ofpassband signal and on top of the weak signal we are trying to copy.

RMDR often dominates over DR3

- Only a few "legacy" transceivers, plus direct sampling SDR radios have RMDR > DR3.
- Superhet examples:
- Kenwood TS-890S & Yaesu FTdx-101D
- Elecraft K3S or K3 w/ new synthesizer
- Hilberling PT-8000A, Icom IC-7851
- Direct sampling examples:
- IC-7610 & IC-7300
- Flex 6000 series, old and new
- Apache ANAN series

Luckily we can live with 85 dB radios

- What performance is usually good enough?
- From the advent of "up-conversion" radios around 1979 (TR-7) until 2003 with the Orion I, all we had were 70 dB DR3 radios at 2 kHz.
- These were adequate on SSB and a big compromise on CW in DX pile-ups or contests.
- If we operate our 85 to 90 dB radios properly, they perform well in most environments.
- Most of the time our radios are not stressed to their limits.

Close-in 2-kHz Test @ 500 Hz BW

Dynamic Range of Top 18 Transceivers

110 dB

106 dB

105 dB

105 dB

105 dB

104 dB

103 dB

101 dB

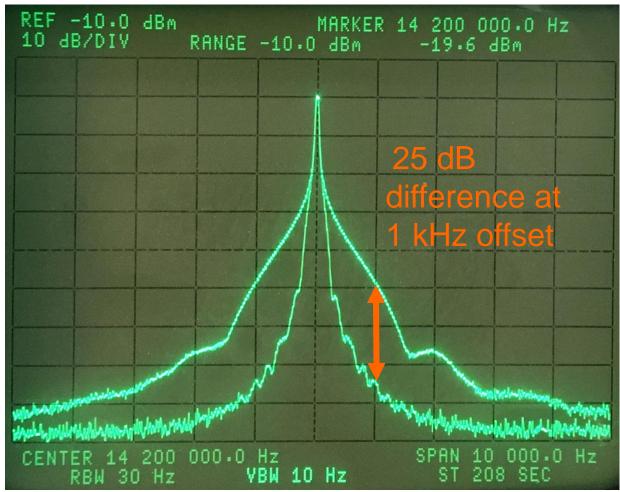
99 dB

99 dB

96 dB

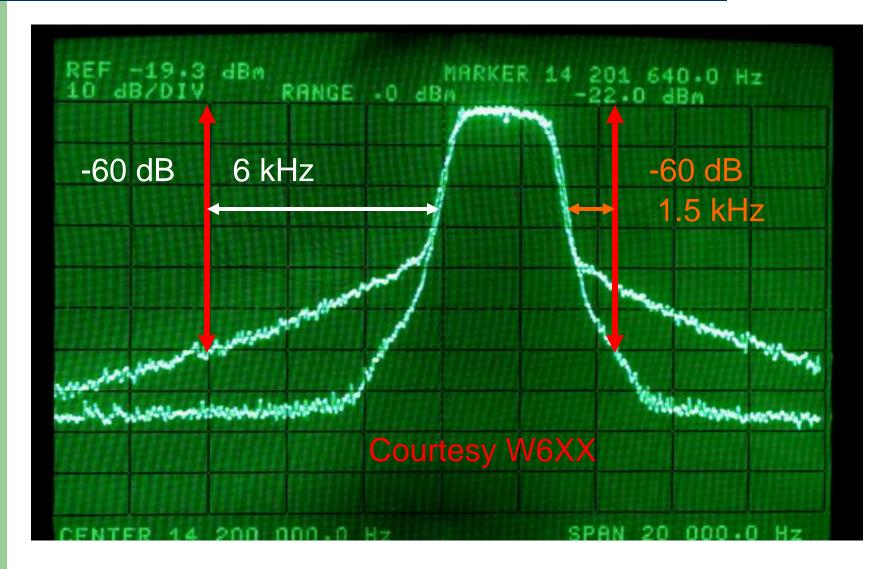
- Yaesu FTdx-101D
- Elecraft K3S
- Icom 7851
- Kenwood TS-890S
- Hilberling
- Elecraft KX3
- ANAN-7000DLE
- Yaesu FTdx-5000D
- Flex 6600 / 6600M
- Flex 6700 (2017)
- Icom 7610 98 dB
- Icom 7300 97 dB
- Flex 5000
- Elecraft K3 95 dB
- Orion II 95 dB
- Orion I 93 dB
- TS-590SG 92 dB
 Ten-Tec Eagle 90 dB

- You can effectively work DX and Contests with any of these fine transceivers.
- New price range \$1000 to \$12,000+
- Used market even lower
 - (16 dB preamp ON) (Preamp OFF)
 - (IP+ ON, high serial number)
 - (Original Synthesizer)

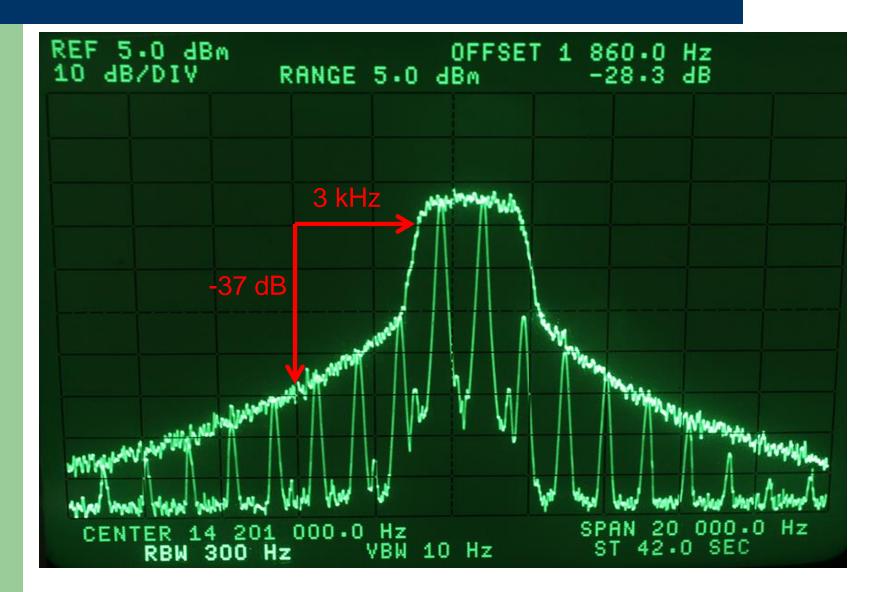

Why is higher DR3 needed on CW?

- Transmitted bandwidth of an adjacent strong signal may be the limit, not receiver overload.
- A CW signal is about 1 kHz wide at -60 dB.
- An SSB signal is about 10 kHz wide at -60 dB.
- A CW pile-up may overload your receiver.
- On SSB, splatter will likely dominate before the receiver dynamic range is exceeded.

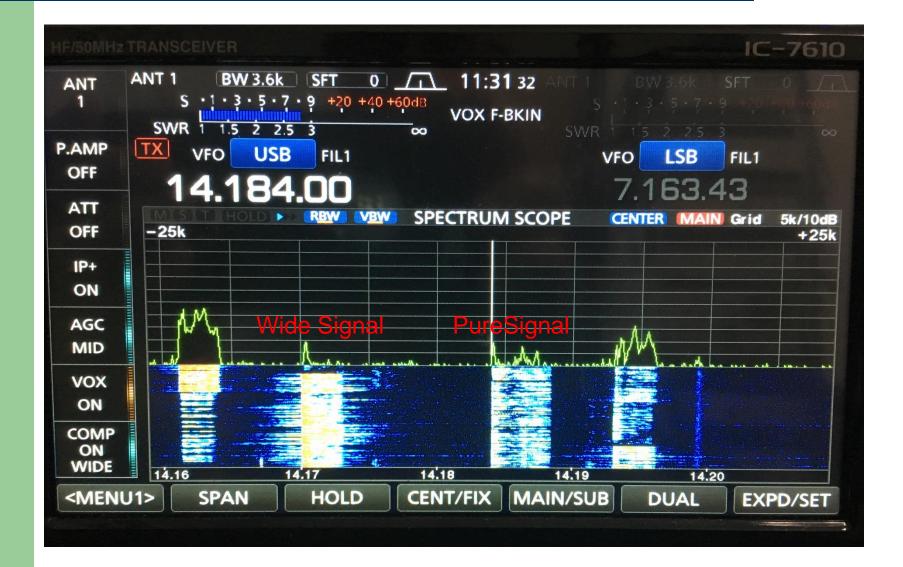
You can select 1 msec on many rigs !!!!


Spectrum of CW Signal on HP 3585A Analyzer

Comparison of 1msec vs 6msec rise time


Apache PureSignal similar to class A

White Noise Mk V Class A vs. K3 Class B @ 75 Watts


How Wide Is Your Signal ?

Comparison 2-Tone vs. Noise Intermodulation Bandwidth

Pre-distortion example on 20m June 2019

Will we ever see pre-distortion as a standard feature?

How do we optimize what we have?

- While we might own a 100 dB DR3 radio, many of us have somewhat less performance.
- A TS-590SG is a 92 dB radio @ 2 kHz.
- N2IC wins contests with two TS-590 radios.
- Consider dynamic range a "window" of performance that can be moved around in absolute level by properly using your attenuator or preamp.

What is often the limit today?

- Receivers have drastically improved in the past 10+ years.
- Transmitter cleanliness: No Improvement ! *
- Transmitted splatter, transmitted broadband noise, and CW key clicks are now usually the limit today.
- During January 2019 CQWW 160m CW, one station had key clicks at least 2 kHz wide.
- * Apache PureSignal the exception on SSB

3 kinds of Transmitted noise

- We have odd-order IMD splatter "noise"
- Rigs where you can "turn on" key click "noise" (Rise time can be set to 1 or 2 milliseconds!)
- I recommend no faster than 6 milliseconds.
- Rarely mentioned "transmitted broadband noise"
- I believe only Icom even mentions transmitted broadband noise in their ad copy.
- We need to be a good neighbor.

Noise hopefully falls off with spacing

Broadband noise comparisons 100 watts

Rig 10 kł	Hz dBc/Hz	100 kHz dBc/Hz
K3S	-141	-143
IC-7851	-129	-138
IC-7610	-128	-142
Flex 6400	-122	-139
IC-7300	-121*	-124 *
FTdx-3K	-120*	-121 *

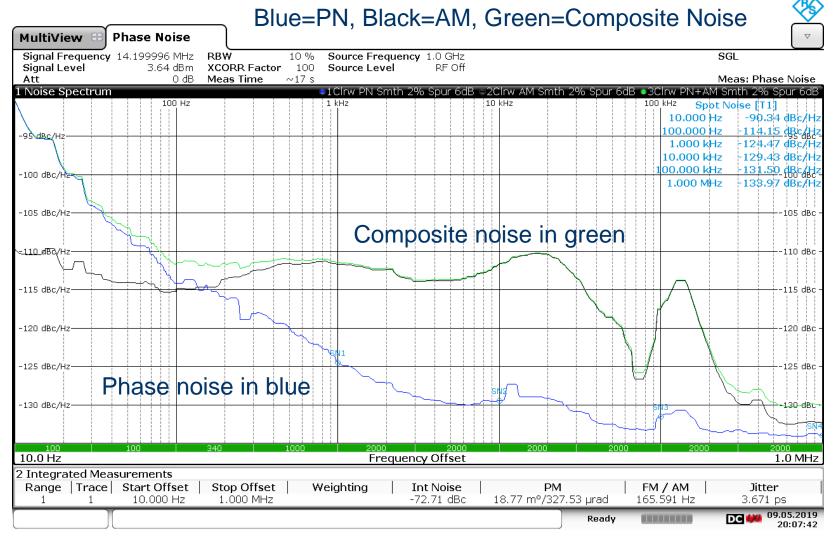
- TS-890S -119 -139
- * Note: Noise hardly falls off at all. Likely a problem on Field Day with two stations on the same band.

Low drive amps are an issue

Noise gets worse at 30 watts output

	Rig	10 kHz dBc/Hz	100 kHz	dBc/Hz
•	K3S	-132	-140	Do you have a
•	IC-785	1 -123	-133	multiplier station
•	IC-761	0 -122	-127	besides your run station?
	Flex 64	-120	-137	
	FTdx-3	K -117	-117	Broadband noise matters.
•	TS-890)S -115	-135	
	IC-730	0 -110	-116	

There is a trade-off. The rig may be cleaner from an IMD splatter standpoint at 30 to 50 watts, but the composite noise is worse.


The League is looking at a solution

ARRL noise measurements are incomplete

- How transmit noise is measured is important.
- Two types of noise exist: Phase and Amplitude
- ARRL only measures Phase Noise.
- "On the air" Composite Noise is what matters.
- Composite noise measures both types !
- Some rigs have minimal AM noise.
- Other rigs have lots of AM noise.
- The following slide is of the IC-7300 at 30 watts where AM noise dominates past 200 Hz offset.

Data courtesy Conrad PA5Y

Transmit noise IC-7300 on 20 meters

20:07:43 09.05.2019

Solid-state Linear Amps not so Linear

The ARRL published a compendium of tube-type linear amplifier oddorder distortion performance copyright 1997.

All the amps had third-order IMD down between 40 and 50 dB below PEP.

A recent review in QST of a popular solid-state amp listed third-order IMD down only 30 dB, with no comment on this value.

Another new amp measured only 27 dB on 10 and 6 meters !

30 dB is 6 to 10 dB worse than the cleaner transceivers in use today.

The cleanest transmitter I have ever owned was the Collins 32S-3.

Transmitters have gotten worse, and now solid-state amps are worse.

We have wonderful receiver performance today, not so much our transmitted signal. This problem adds to QRM.

What is the bottom line?

- On the lower bands at night, use of your receiver attenuator is usually appropriate.
- There is no point in band noise reading upscale on your S meter.
- A preamp is generally NOT needed on 20 meters.
- A preamp would *never* be needed at night on 40 meters and below, assuming the transmit antenna is used on receive.

My caution about preamp usage !

- With a superhet, like a K3S, TS-890S & FTdx-101D, you can often get away with improper usage of a preamp due to the narrow roofing filters. Most signals on the band will be rejected by the roofing filter.
- Overload is less likely.
- A direct sampling radio in effect has a roofing filter (BPF) of more than the whole band. (IC-7610)
- 3-4 MHz, 6-8 MHz, 11-15 MHz, 15-22 MHz, 22-30 MHz
- Running a preamp when there is zero reason to do so just asks for the ADC to be driven into overload.
 (O)/E display for an loom 7610/7300)

(OVF display for an Icom 7610/7300)

How do we evaluate & optimize a transceiver?

- 160 40m receivers are too sensitive at night.
- Make the most of the radio's dynamic range by properly using the attenuator, and using the preamp only when necessary on the high bands.
- Published dynamic range can be misleading, depending on how it is measured.
- This could be a presentation on its own.
- Get feedback from successful contesters & DXers.
- What works for them?

Don't be a slave to one number !

- Let me emphasize there are great products now from all five major OEMs.
- Note the 18 models listed earlier with a dynamic range of 90 dB or greater at 2 kHz.
- Pick your personal desired performance level and then look at the whole picture.
- Examples: good ergonomics, reliability, factory service, clean RX & TX audio, NR & NB, spectrum display, timely firmware upgrades.
- Total cost of ownership Repairs over time.

What not to worry about today

- Sensitivity is not an issue 160 6 meters.
- Selectivity with today's DSP is excellent.
- Drift? Long gone !
- Alignment is no longer an issue.
- Unless your main emphasis is Field Day in a multi-transmitter environment, or multi-multi contest operation, if you operate your radio properly, overload should not be an issue for most of us.
- Europe on 40m is a different environment.

Rankings by importance

- This may be "heresy" from someone who tests transceivers.
- Location, Antennas, Operator Skill, choice of your radio model.
- You may not have many options for #1 & #2.
- I moved to the country and put up 6 towers.
- Operator skill can always improve.
- Don't buy a "dud" radio! Hi Hi
- Your radio doesn't have to cost a fortune.

http://www.NC0B.com

Videos from past CTU presentations

CTU 2013 through 2019 (Select desired year)

http://www.contestuniversity.com/videos

Sherwood Shootouts (Contest Comparisons) published by DJ0IP

http://www.dj0ip.de/sherwood-forest/sherwood-s-shootouts/