Sherwood Engineering HF Test Results

Model Elecraft KX2 Model Elecraft KX2	Serial # 01244 Serial # 01548	Test Date: 3/22/17 Test Date: 7/19/20		17
IF BW 2400 –6 / -60, Hz IF BW 500 –6 /-60, Hz	/ Ultim / Ultim			dB dB
Front End Selectivity (A – F First IF rejection +/- kHz)			dB
Dynamic Range with radio, Dynamic Range 20 kHz Dynamic Range 10 kHz Dynamic Range 5 kHz Dynamic Range 2 kHz * See notes on anomalous re	low side 97, low side 88, 1 low side 86, 1	high side 92 high side 83		dB dB dB dB
Dynamic Range with radio, Dynamic Range 20 kHz Dynamic Range 10 kHz Dynamic Range 5 kHz Dynamic Range 3 kHz Dynamic Range 2 kHz * See notes on anomalous re	low side 98, 1 low side 89, 1 low side 88, 1 low side 87, 1	high side 93 high side 88 high side 86		dB dB dB dB dB
Dynamic Range with radio, Dynamic Range 20 kHz Dynamic Range 2 kHz	2 nd radio			dB dB
Dynamic Range with radio, Dynamic Range 20 kHz Dynamic Range 2 kHz	alternate conversion so	cheme		dB dB
Blocking above noise floor, See notes below on blocking	0	z, AGC On,		dB
Phase noise (normalized) at Phase noise (normalized) at	5 kHz spacing: 10 kHz spacing: 20 kHz spacing: 30 kHz spacing: 40 kHz spacing: 50 kHz spacing:		-131 -132 -129 -129 -130 -129	dBc dBc dBc dBc dBc dBc dBc dBc dBc

Phase noise (normalized) at 100 kHz spacing: Phase noise (normalized) at 200 kHz spacing: Phase noise (normalized) at 300 kHz spacing: Phase noise (normalized) at 400 kHz spacing: Phase noise (normalized) at 500 kHz spacing:				dBc dBc dBc dBc dBc dBc
Noise floor, SSB bandwidth 14 MHz, no preamp Noise floor, SSB bandwidth 14 MHz, Preamp 1 Or Noise floor, SSB bandwidth 14 MHz, Preamp 2 Or			115 129	dBm dBm dBm
Sensitivity SSB at 14 MHz, no preamp Sensitivity SSB at 14 MHz, Preamp 1 On Sensitivity SSB at 14 MHz, Preamp 2 On			.2 .25	uV uV uV
S/N 01244 Noise floor, 500 Hz, 14.2 MHz, no preamp Noise floor, 500 Hz, 14.2 MHz, preamp 1 On			121 135	dBm dBm
S/N 01548 Noise floor, 500 Hz, 14.2 MHz, no preamp Noise floor, 500 Hz, 14.2 MHz, preamp 1 On			123 136	dBm dBm
Noise floor, SSB, 50.125 MHz, no preamp Noise floor, SSB, 50.125 MHz, Preamp 1 Noise floor, SSB, 50.125 MHz, Preamp 2				dBm dBm dBm
Sensitivity, SSB, 50.125 MHz, no preamp Sensitivity, SSB, 50.125 MHz, Preamp 1 Sensitivity, SSB, 50.125 MHz, Preamp 2				uV uV uV
Noise floor, 500 Hz, 50.125 MHz, no preamp Noise floor, 500 Hz, 50.125 MHz, Preamp 1 On Noise floor, 500 Hz, 50.125 MHz, Preamp 2 On				dBm dBm dBm
Signal for S9, no preamp Signal for S9, Preamp 1 Signal for S9, Preamp 2	-57 dBm -76 dBm	21 31	86 3	uV uV uV
Gain of preamp(s) Preamp 1 Preamp 2		19	9	dB dB
AGC threshold at 3 dB, no preamp AGC threshold at 3 dB, Preamp 1 On AGC threshold at 3 dB, Preamp 2 On		3	1 .4	uV uV uV

Notes:

S/N 01244 was returned to Elecraft for "tweaking" after the initial dynamic-range measurements at 5 kHz were modestly lower than published by the ARRL. While I no longer publish any non-random sample data on my website, I did re-measure this KX2 after returning from Elecraft.

There was no change in noise floor or 20 kHz dynamic range. The 5 kHz dynamic range improved 4 dB on the high side and degraded 1 dB on the low side. My website (and the ARRL) only publishes the lower of the two dynamic-range numbers for any high side and low side measurements. (worst case)

It was also noted that at 5 kHz the distortion products followed a virtual 1:1 ration rather than a more classic 3:1 ratio. This is unusual, as at least a 2:1 is typically observed for measurements near the receiver's noise floor.

The reason for testing another random sample was to see if the dynamic range anomaly on the high side at 2 kHz was consistent. The same issue was observed on sample #2.

The anomaly noted when measuring the 2-kHz dynamic range is as follows: On the low side the measurement was made without any leakage from the test tone 2 kHz away. On the high side, however, the leakage from the test tone 2 kHz away overwhelmed the third-order measurement at bandwidths of 500, 400, 300, 200 & 100 Hz. On the other hand, if the bandwidth was set to 550, 450, 350, 250, 150 & 50 Hz, the leakage was minimized.

From a practical standpoint, the 2-kHz dynamic range issue is rather meaningless when a KX2 is used out in the field with a modest antenna. Additionally, there are other spurious responses that are at least 10 dB stronger than the third-order distortion. Due to this anomaly, however, my web site will publish the 3-kHz dynamic range instead of the 2-kHz dynamic range.

All in all, for a radio that can be put in a coat pocket, the KX2 performs admirably. My friends who do SOTA should be quite pleased using the lighter weight "little brother" of the KX3.

Rev D1